
EPANET - EXERCICE N° 01

1) Présentation

On considère le réseau dont l'ossature principale est définie par le schéma ci-dessous :

Le réseau existant est composé des éléments suivants :

- Un réservoir « R » constituant l'origine de la distribution (niveau constant)
- Quatre nœuds « A, B, C, D » de livraison des volumes requis (demande)
- Six conduites de liaisons numérotées de 1 à 6

Les caractéristiques des éléments du réseau existant sont :

Description des Nœuds			Description des conduites (Arcs)			
ID Nœud	Altitude NGF	Demande I/s	ID Arc	Longueur m	Diamètre mm	Rugosité mm
Noeud A	170,00	30	Tuyau 1	500	400	0,2
Noeud B	150,00	15	Tuyau 2	300	250	0,5
Noeud C	130,00	10	Tuyau 3	400	100	0,5
Noeud D	140,00	20	Tuyau 4 Tuyau 5	250 300	150 300	0,2 0,5
Bâche R	200,00		Tuyau 6	600	100	0,5

2) Evolution de la situation

Il est projeté de construire un centre commercial au point « N » qui sera (pour des raisons de sécurité de défense incendie) raccordé au réseau existant par 2 conduites distinctes « 7 et 8 » à partir des nœuds B et C.

Les caractéristiques de l'extension sont :

Nœud « N » : altitude 130,00 NGF

Demande en « N » : 25 l/s
Rugosité conduites : 0,1 mm
Longueur arc « 7 » : 100 m
Longueur arc « 8 » : 300 m

Le cahier des Charges impose les contraintes suivantes :

• Pression maximale : ≤ 70 mCE

• Vitesse conduite (v) : $0.5 \le v \le 1.5 \text{ m/s}$

3) Travail demandé

a) Construire le réseau sous EPANET en respectant les options de simulation

b) Déterminer les diamètres des arcs N° 7 & 8 en respectant le cahier des charges

c) Dresser les tableaux des valeurs des nœuds avec les indications suivantes :

	Altitude	Demande	NPZ	Pression
ID Nœud	NGF	I/s	NGF	mCE

d) Dresser le tableau des valeurs des arcs avec les indications suivantes :

	Longueur	Diamètre	Rugosité	Débit	Vitesse	État
ID Arc	m	mm	mm	I/s	m/s	

e) Vérifier que pour tous les nœuds et arcs, le cahier de charges est respecté. Dans le cas contraire, proposez une solution

Options de simulations

Unités de débit : LPS (l/s)
Formule PDC : D-W (Darcy)

Densité relative : 1
Viscosité relative : 1

Il est demandé de respecter la numérotation et repérage des éléments constitutifs du réseau.